过去八年,Transformer 几乎重塑了整个人工智能研究版图。自 2017 年 Google 在「Attention Is All You Need」中提出这一架构以来,「注意力机制」逐渐从一种工程技巧演变为深度学习的通用范式——从自然语言处理到计算机视觉,从语音、多模态到科学计算,Transformer 正在成为事实上的基础模型骨架。以 ...
原始"Attention Is All You Need"论文中提出的标准Transformer架构最初设计用于处理离散输入和输出序列标记(token),但将其应用于时间序列分析时,需要对模型结构进行适当调整以适应连续数据特性。本文详细阐述了使原始Transformer架构能够高效处理连续值时间序列数据 ...
导语:非 Transformer 面临的共同考验依然是证明自己的天花板有多高。 【雷峰网(公众号:雷峰网)】2017年谷歌发表的论文《Attention Is All You Need》成为当下人工智能的一篇圣经,此后席卷全球的人工智能热潮都可以直接追溯到 Transformer 的发明。 Transformer 由于其 ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果