近日,开源机器学习框架 PyTorch 官方宣布,将提供对苹果 M 系芯片的原生支持。 这意味着开发和研究人员可以利用苹果芯片的 GPU 进行更快的模型训练,之前在苹果平台电脑上的 PyTorch 框架只支持利用 CPU 训练。 (来源:PyTorch) 简单说一下苹果自研的 M 系芯片 ...
一直以来,Pytorch在Mac上仅支持使用CPU进行训练。 就在刚刚,Pytorch官方宣布,其最新版v1.12可以支持GPU加速了。 只要是搭载了M1系列芯片的Mac都行。 此功能由Pytorch与Apple的Metal工程团队合作推出。 它使用Apple的Metal Performance Shaders(MPS) 作为PyTorch的后端来启用GPU加速 ...
【导读】果粉Big Day!PyTorch宣布,原生支持苹果Mac GPU机器学习加速。与单CPU加速相比,训练性能提升6倍,推理任务性能最高提升21倍 对于搞AI和机器学习的苹果用户来说,今天无疑是个好日子。 PyTorch官网宣布,在与Metal工程团队合作后,很高兴地宣布支持Mac上的 ...
更多精彩内容 请点击上方蓝字关注我们吧! 今年 3 月,苹果发布了其自研 M1 芯片的最终型号 M1 Ultra,它由 1140 亿个晶体管组成,是有史以来个人计算机中最大的数字。苹果宣称只需 1/3 的功耗,M1 Ultra 就可以实现比桌面级 GPU RTX 3090 更高的性能。 随着用户 ...
如何提升PyTorch“炼丹”速度? 最近,有一位名叫Lorenz Kuhn的小哥,分享了他在炼丹过程中总结的17种投入最低、效果最好的提升训练速度的方法,而且基本上都可以直接在PyTorch中进行更改,无需引入额外的库。 不过需要注意的是,这些方法都是假设是在GPU上 ...
神经网络训练过程中,模型优化与过拟合防控之间的平衡是一个核心挑战。过拟合的模型虽然在训练数据上表现优异,但由于其复杂性导致模型将训练数据集的特定特征作为映射函数的组成部分,在实际部署环境中往往表现不佳,甚至出现性能急剧下降的问题。
【新智元导读】用英伟达的GPU,但可以不用CUDA?PyTorch官宣,借助OpenAI开发的Triton语言编写内核来加速LLM推理,可以实现和CUDA类似甚至更佳的性能。 试问,有多少机器学习小白曾被深度学习框架和CUDA的兼容问题所困扰? 又有多少开发者曾因为频频闪烁的警报「 ...